Exercise increases fat oxidation at rest unrelated to changes in energy balance or lipolysis.

نویسندگان

  • J Calles-Escandón
  • M I Goran
  • M O'Connell
  • K S Nair
  • E Danforth
چکیده

The hypothesis that exercise increases fat oxidation at rest independently of changes in energy balance, body composition, and/or lipolysis was tested in 21 volunteers. After a period of energy balance, volunteers were randomly allocated to one of four groups: control, overfed (OF), overfed and exercised (OF-EX), and exercised (EX). OF and OF-EX were overfed 50% excess of energy balance calories; OF-EX and EX spent 50% excess of energy balance calories during daily exercise sessions. Exercise increased fat oxidation at rest independently of dietary intake (OF-EX = + 22 +/- 2.4, EX = + 23 +/- 1.5 mg/min) and reduced carbohydrate oxidation (OF-EX = - 49 +/- 6.2, EX = - 46 +/- 5.4 mg/min). Volunteers in the OF group had an increase in carbohydrate oxidation (85 +/- 5.9 mg/min) and a decline in fat oxidation (- 33 +/- 1.4 mg/min). Protein oxidation did not change in any group. These changes occurred without a direct relation with changes in lipolysis and persisted even when expressed as a percentage or as an absolute equivalent of resting metabolic rate in calories. Thus exercise, independent of changes in energy intake and body composition and not related to changes in lipolysis, increases fat oxidation at rest, which may explain the beneficial effects of exercise in weight loss programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fat metabolism in formerly obese women.

An impaired fat oxidation has been implicated to play a role in the etiology of obesity, but it is unclear to what extent impaired fat mobilization from adipose tissue or oxidation of fat is responsible. The present study aimed to examine fat mobilization from adipose tissue and whole body fat oxidation stimulated by exercise in seven formerly obese women (FO) and eight matched controls (C). Li...

متن کامل

Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise.

We determined whether a low-fat diet reduces intramuscular triglyceride (IMTG) concentration, whole body lipolyis, total fat oxidation, and calculated nonplasma fatty acid (FA) oxidation during exercise. Seven endurance-trained cyclists were studied over a 3-wk period during which time they exercised 2 h/day at 70% of maximum O2 uptake VO(2 max) and consumed approximately 4,400 kcal/day. During...

متن کامل

Effect of aging on glucose and lipid metabolism during endurance exercise.

Endurance exercise increases the use of endogenous fuels to provide energy for working muscles. Elderly subjects oxidize more glucose and less fat during moderate intensity exercise. This shift in substrate use is presumably caused by age-related changes in skeletal muscle, including decreased skeletal muscle respiratory capacity, because adipose tissue lipolysis and plasma fatty acid availabil...

متن کامل

High-altitude acclimation increases the triacylglycerol/fatty acid cycle at rest and during exercise.

High-altitude acclimation alters lipid metabolism during exercise, but it is unknown whether this involves changes in rates of lipolysis or reesterification, which form the triacylglycerol/fatty acid (TAG/FA) cycle. We combined indirect calorimetry with [2-(3)H]glycerol and [1-(14)C]palmitate infusions to simultaneously measure total lipid oxidation, lipolysis, and rate of appearance (R(a)) of ...

متن کامل

Regulation of fat metabolism during resistance exercise in sedentary lean and obese men.

The effect of acute resistance exercise (RE) on whole body energy expenditure (EE) and alpha(2)-adrenergic receptor (alpha(2)-AR) regulation of lipolysis in subcutaneous abdominal adipose tissue (SCAAT) was determined in sedentary lean (LN) and obese (OB) men. Lipolysis was monitored using microdialysis in 10 LN [body mass index (BMI) 20.9 +/- 0.6] and 10 OB (BMI 36.2 +/- 2.7) men before, durin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 270 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1996